
Engineering Wine

Overview

- Background
- Process Overview
- Goals and Modeling Requirements
- Consumer Preference Model
- Financial Analysis
- Analysis Under Uncertainty
- Conclusions

Background

History of Wine

- Enjoyed by many civilizations
- Celebratory and ceremonial uses
- "Nectar of the Gods"
- Increasing desire of consumer satisfaction

Wine Today

- BEFORE: Wine quality/characteristics influence by producer
- NOW: Consumers control wine quality
- New tasks for producer
 - Identify consumer wants
 - Adjust manufacturing
 - Adjust price

Solution

- Identify consumer utility
- Manipulate process to meet desired quality
- Determine wine characteristics before bottling
- Meet profit aspiration

Process Overview

Process Overview

Basic Process: 4 main steps

- Harvest and Crushing
- Fermentation
 - Reduction of sugar, increase in –OH
 - Malolactic Fermentation, decrease acidity
- Clarification/Hot and Cold Stabilization
- Oak Aging

Harvest and Crushing

- Cold soaking is
 where hue and
 brightness can be
 altered (color)
- Tannins extracted from seeds and grapes (bitterness)

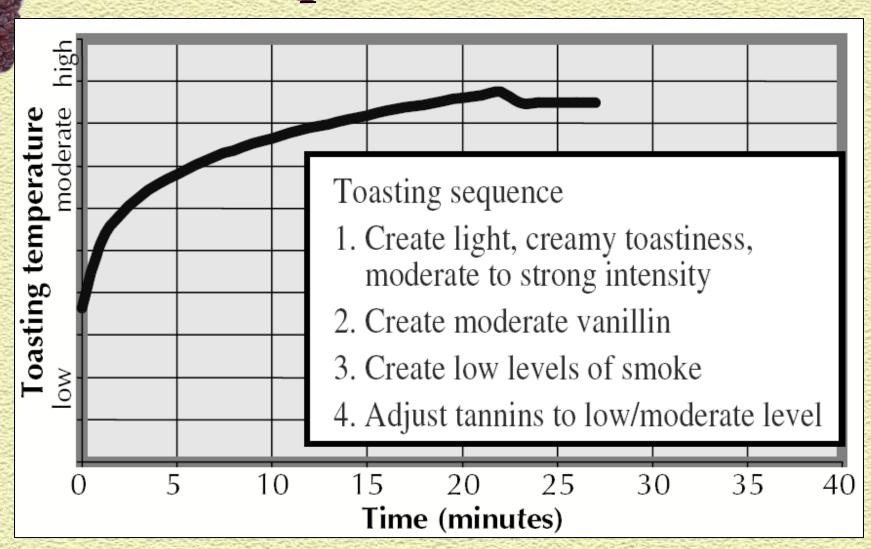
Fermentation and Clarification

- Fermentation
 - Increase in percent alcohol (body/texture)
 - Reduction in residual sugar (sweetness)
 - Increase fermentation time decreased acidity
- Clarification/Hot and cold stabilization
 - Clarity
 - Filtering

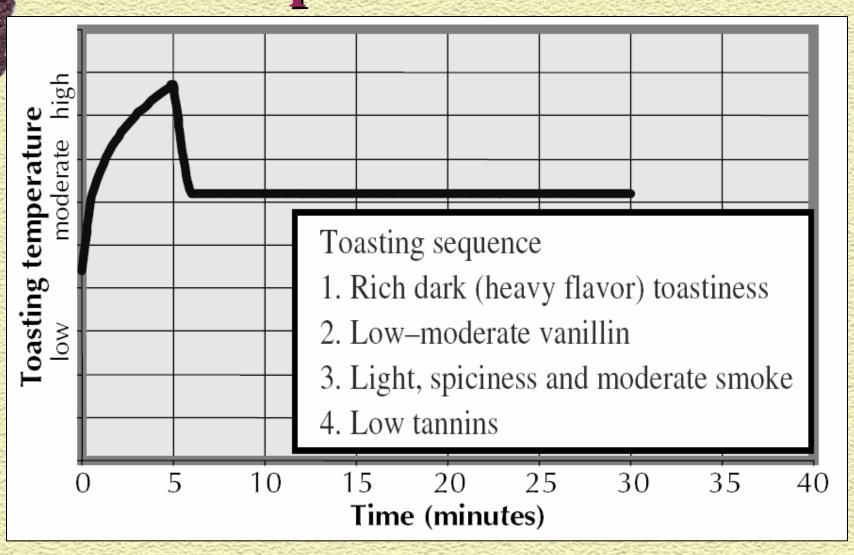
Aging: Natural Grape Aroma

• Flowery aroma comes from β-damascenone

 Berry aroma associated with βionone


Toasting Effects

- Barrel Heating
 - Open Flame
 - Time vs. Temperature Profiling
 - Toast Levels
 - Light
 - Medium
 - Medium Plus
 - Heavy



Time-Temperature Profile

Time-Temperature Profile

Compounds

- Cellulose and amino acids undergo
 Maillard reaction
 - Responsible for caramel, butterscotch flavor
- Lignin →Pyrolysis
 - Responsible for clove, vanilla flavor
- Oak and clove flavor from noncaramelized wood

Modeling Requirements

Goals

Develop model for calculation of NPW with inputs:

- Physical properties of the wine
- Selling price
- Competitor selling price
- Advertising level
- Consumer budget

Demand Model

Satisfaction

$$S = \left(d_1^{\rho} + d_2^{\rho}\right)^{1/\rho}$$

Maximize Satisfaction

$$p_1 d_1^{1-\rho} = \frac{\alpha}{\beta} p_2 d_2^{1-\rho}$$

Consumer Budget

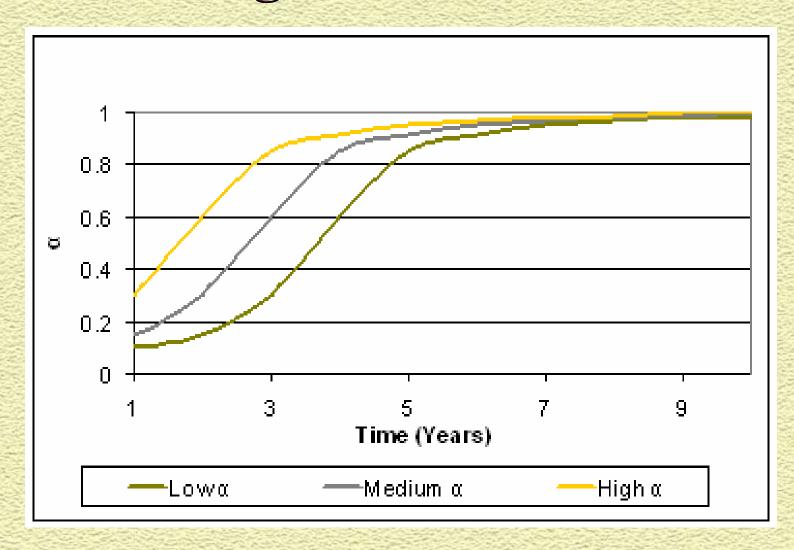
$$Y \ge p_1 d_1 + p_2 d_2$$

Happiness Function

1. Happiness Function: $H_1 = \sum w_i y_i$

$$H_1 = \sum w_i y_i$$

Function:


2. Superiority
$$\beta = H_2/H_1$$

3. Demand 1:
$$d_1 = \left(\frac{\alpha}{\beta}\right)^{\rho} \frac{p_2}{p_1} \left[\frac{Y - p_1 d_1}{p_2}\right]^{1 - \rho} d_1^{\rho}$$

Advertising Levels

Consumer Preference Model

Wine Characteristics

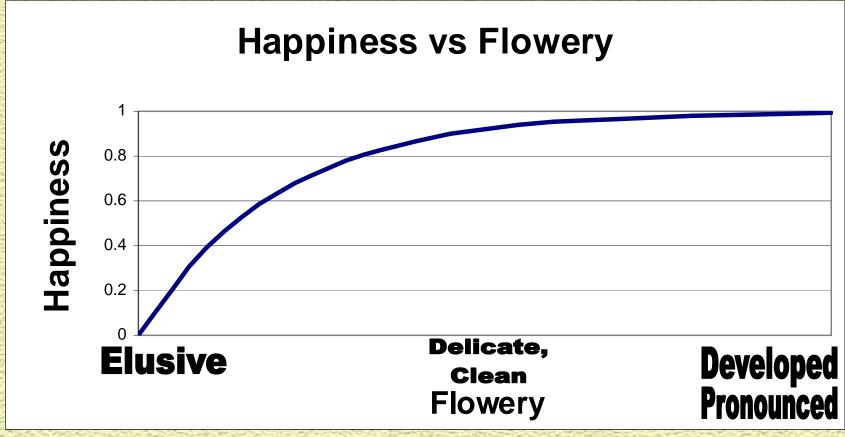
- Clarity
- Body/Texture
- Bouquet
 - Flowery
 - Berry
 - Vanilla
 - Butterscotch
 - Clove
 - Coconut/Oak

- Acidity
- Sweetness
- Bitterness
- Color
 - Hue
 - Brightness

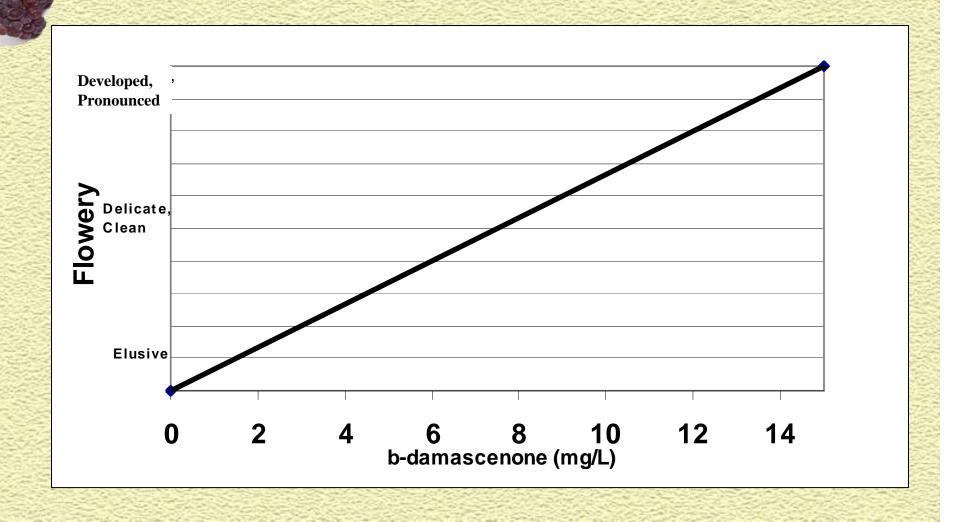
Consumer Preference

- Survey over sample population
- Determined relative importance of characteristics
- Resulted in values of w_i

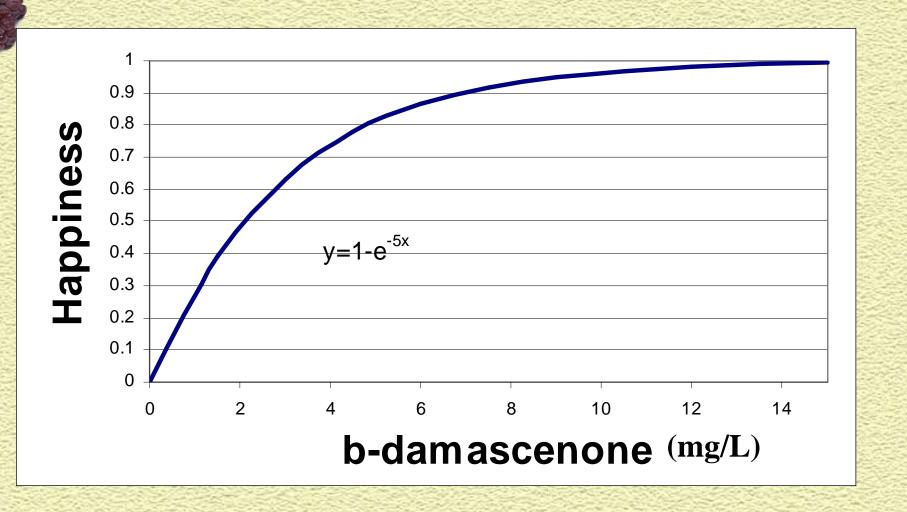
Characteristic	\mathbf{W}_{i}
Clarity	0.15
Color	
Hue	0.08
Brightness	0.08
Bouquet	0.30
Acidity	0.08
Sweetness	0.08
Bitterness	0.08
Body/Texture	0.15


Happiness Curve: Bouquet-Flowery

- Happiness related to consumer descriptions
- Descriptions related to amount of component
- Happiness description of Flowery components



Example Flowery Preference Curve



Flowery vs \beta-damascenone

Preference vs b-damascenone

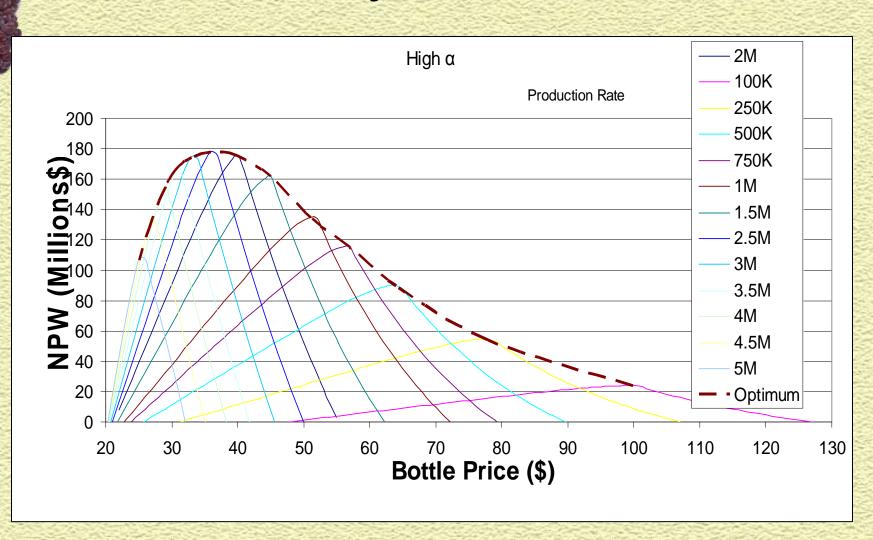
Happiness-Perfect Bottle

Happiness	Уi	Wi
Aging Year	1	Weights
Production Year	2	
Clarity	0.78	0.153846
Color (Hue)	0.64	0.076923
Color (Brightness)	0.70	0.076923
Flowery (b-damascenone)	1.00	
Berry (b-ionone)	1	
Vanilla (Vanillin)	0	
Clove (Eugenol)	0.19	
Butterscotch (Furfural)	0.1198	
Oak/Coconut (Lactones)	0.2153	
Combined Score of 6	0.42085	0.3076923
Acidity	1.00	
Sweetness	1.00	
Bitterness	0.67	
Combined Score of 3	0.89	0.230769
Body	0.44	0.153846
Total Happiness (H₁)	0.62452	1.00

$$H_1 = \sum w_i y_i$$

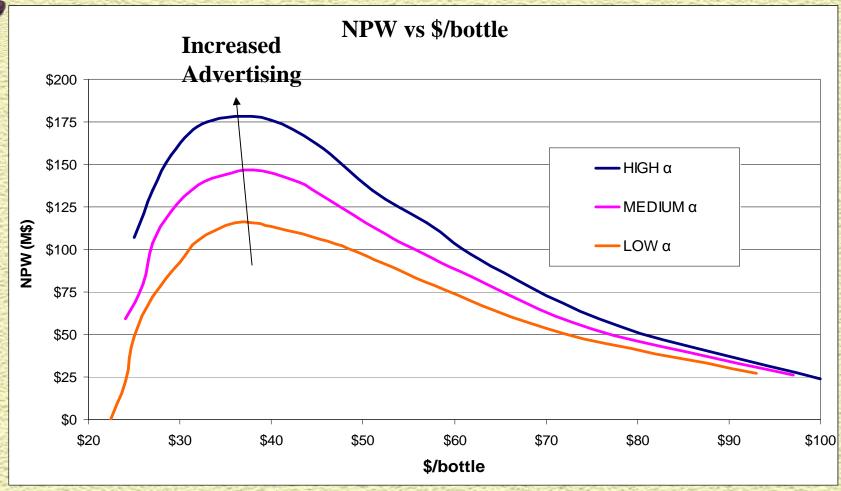
$$\beta = H_2/H_1$$

Financial Analysis


Final Product Desired

- For particular α level and β, find:
 - Optimum selling price p₁ at each production rate K, by:
 - Maximizing NPW, such that:

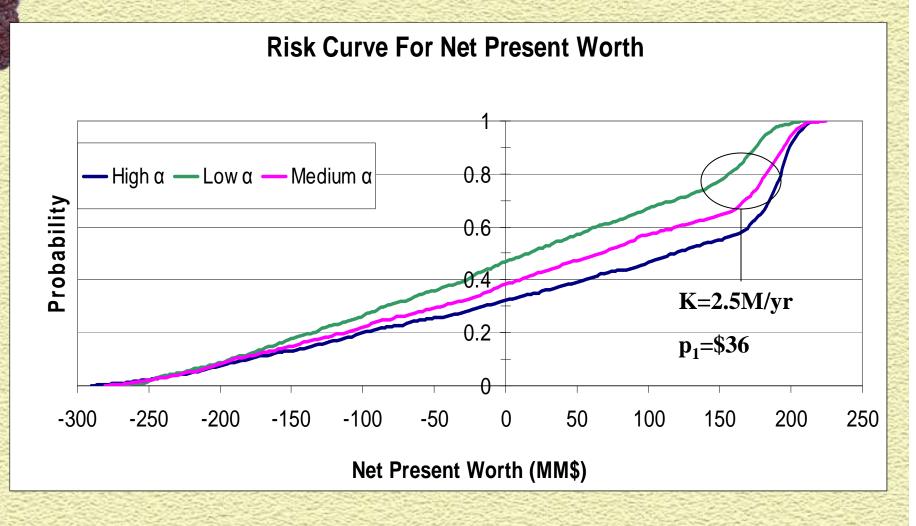
$$\Phi(d_1) = p_1 d_1 - \left(\frac{\alpha}{\beta}\right)^{\rho} p_2 \left[\frac{Y - p_1 d_1}{p_2}\right]^{1 - \rho} d_1^{\rho} = 0$$



Financial Analysis: "Perfect Wine"

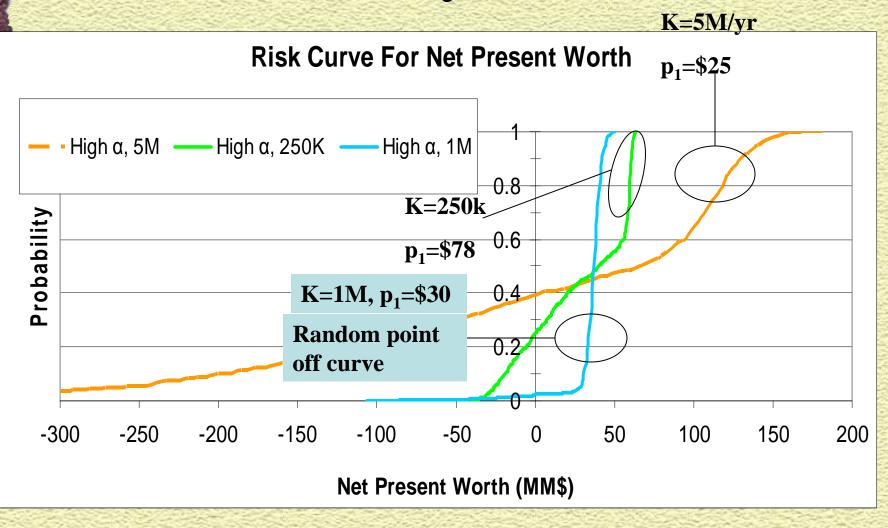
Engineering Wine

Analysis Under Uncertainty

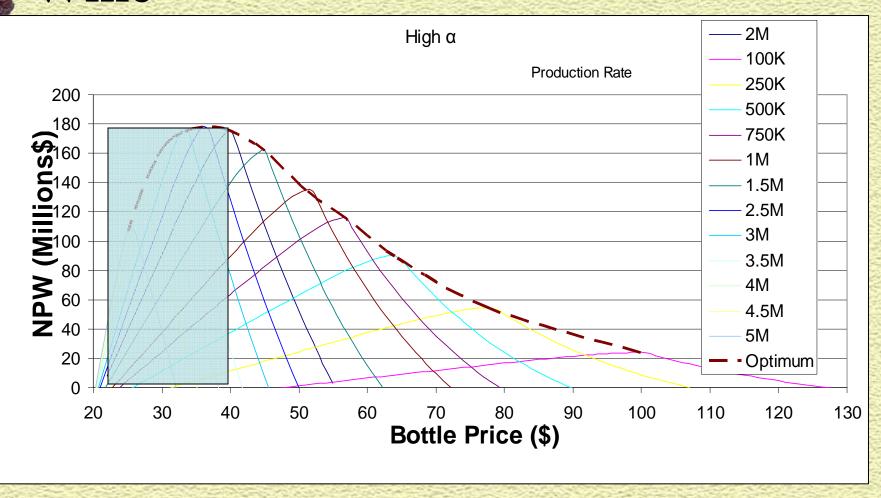


Uncertainty

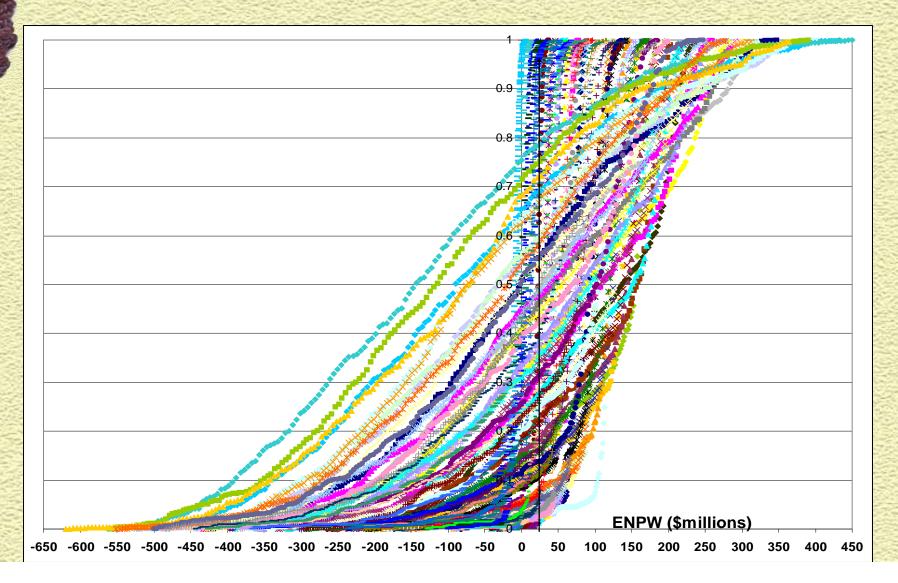
- Driving factor for quantifying risk
- Sensitivity analysis
 - Consumer happiness, H₂
 - Competitor price, P₂
 - Consumer budget, Y
 - Consumer happiness, H₁
 - Interest rate



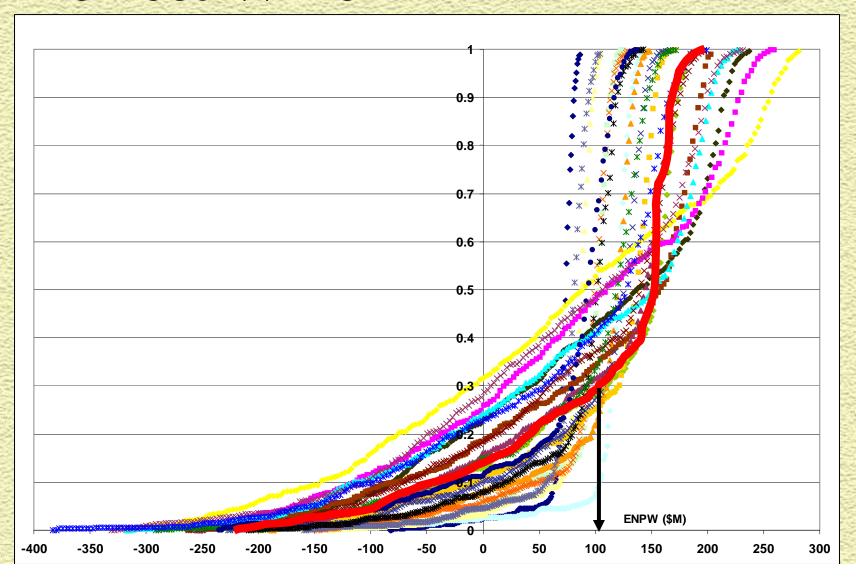
Initial Risk Analysis



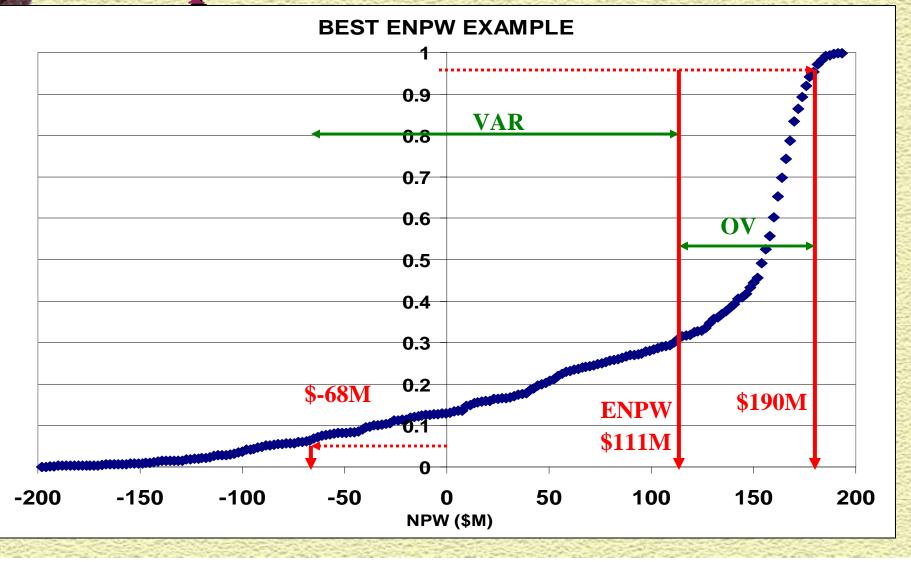
Initial Risk Analysis



Complete Risk Analysis: "Perfect Wine"

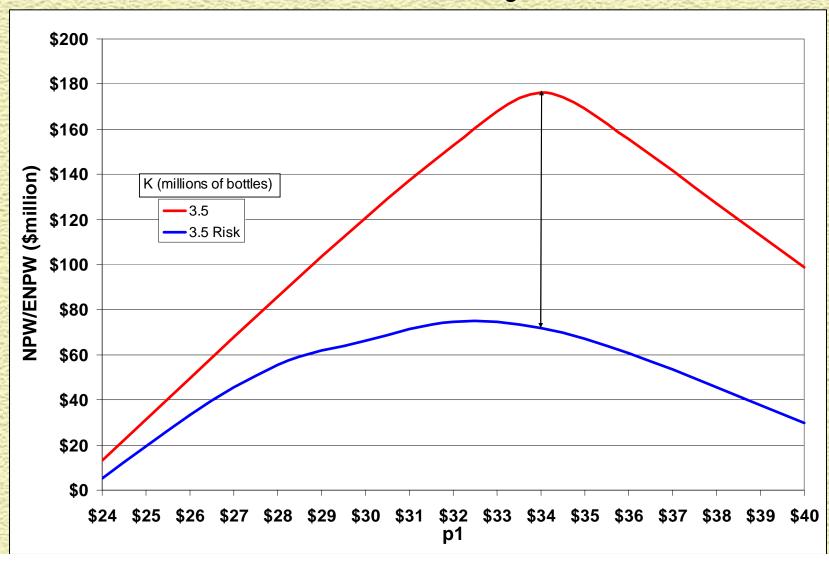


Risk Curves: "Perfect Wine"



"Perfect Wine"

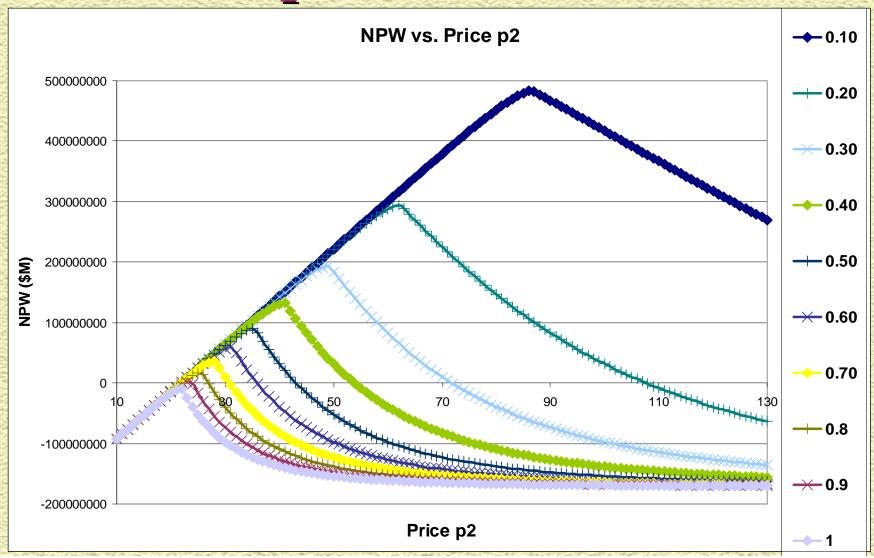
Example ENPW


Summary of Risk: Decreasing

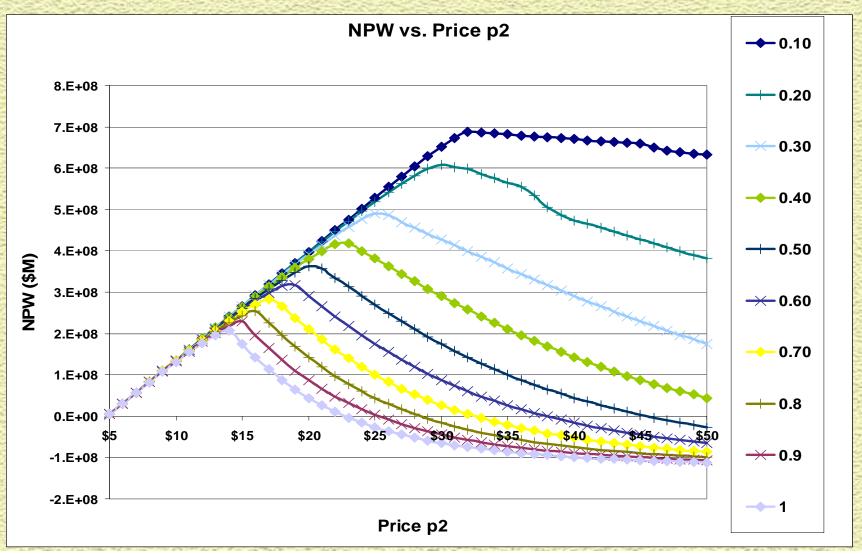
ENPW

SORTED BY DECREASING ENPW																	
K (mil)	p ₁	NPW (\$M)	ROI	ENPW (\$M)	? = 0	VAR (\$M)	OV (\$M)	1	Decreasing ENPW Continued								
2.0	\$40	\$164	174%	\$111	13%	\$200	\$68	K (mil)	p ₁	NPW (\$M)	ROI	ENPW (\$M)	? = 0	VAR (\$M)	OV (\$M)		
2.0	\$38	\$145	154%	\$106	11%	\$182	\$52	4.0	\$30	\$135	73%	\$51	26%	\$256	\$114		
2.5	\$38	\$180	153%	\$104	19%	\$239	\$95	4.0	\$32	\$154	82%	\$50	31%	\$297	\$156		
2.5	\$36	\$158	134%	\$102	16%	\$199	\$75	2.5	\$28	\$56	48%	\$47	5%	\$54	\$28		
2.0	\$36	\$125	133%	\$100	8%	\$137	\$38	3.5	\$38	\$127	78%	\$46	41%	\$293	\$227		
2.5	\$34	\$134	114%	\$99	10%	\$171	\$50	4.0	\$28	\$99	53%	\$44	23%	\$199	\$79		
2.5	\$40	\$197	167%	\$98	23%	\$231	\$124	1.0	\$34	\$44	92%	\$43	1%	\$9	\$9		
1.5	\$40	\$121	170%	\$98	8%	\$130	\$33	1.5	\$30	\$43	61%	\$41	1%	\$13			
3.0	\$34	\$161	114%	\$92	19%	\$208	\$91	2.0	\$28	\$42	45%	\$39	3%	\$18	\$19		
1.5	\$38	\$106	149%	\$90	6%	\$96	\$26	4.0	\$34	\$126	67%	\$38	41%	\$282	\$199		
3.0	\$36	\$184	131%	\$90	24%	\$245	\$119	3.5	\$26	\$50	30%	\$33	10%	\$102	\$42		
2.0	\$34	\$105	111%	\$88	6%	\$99	\$31	1.0	\$32	\$34	70%	\$33	1%	\$8			
3.0	\$38	\$185	132%	\$87	26%	\$254	\$152	3.0	\$26	\$40	28%	\$31	8%	\$49			
3.0	\$32	\$133	94%	\$86	15%		\$67	3.5	\$40	\$99 \$50	60%	\$30	44%	\$287	\$269		
2.5	\$32	\$108	92%	\$85	8% 3%	\$123	\$40	4.0	\$26	\$59	32%	\$29	18%	\$136	\$55		
1.5	\$36 \$32	\$90	127% 93%	\$80 \$75	23%	\$65	\$21	2.5	\$26 \$28	\$30 \$27	26% 39%	\$26 \$26	4%	\$22 \$14	\$23 \$13		
3.5 3.0	\$32 \$40	\$153 \$157	93% 112%	\$75 \$74	23% 32%	\$228 \$282	\$101 \$192	1.5 4.5	\$28	\$27 \$108	52%	\$25 \$25	1% 33%	\$1 4 \$231	\$13 \$117		
2.0	\$32	\$157 \$84	89%	\$74 \$74	52% 5%	φ202 \$67	\$192 \$25	4.5 4.0	\$26 \$36	\$108 \$97	52% 52%	\$23 \$23	35% 45%	\$305	\$117 \$246		
3.5	\$34	\$176	108%	\$74 \$72	29%	\$238	\$137	1.0	\$30	\$23	48%	\$23	0%	\$303 \$9	\$8		
3.0	\$30	\$102	73%	\$72	11%	\$156	\$53	4.5	\$30	\$122	58%	\$21	39%	\$280	\$160		
1.0	\$40	\$76	157%	\$70	2%	\$21	\$13	2.0	\$26	\$21	22%	\$20	4%	\$17	\$17		
2.5	\$30	\$82	70%	\$68	7%	\$86	\$31	4.5	\$26	\$67	32%	\$16	25%	\$209	\$77		
1.5	\$34	\$75	105%	\$68	3%	\$25	\$17	1.0	\$28	\$13	26%	\$12	2%	\$9	\$9		
3.5	\$30	\$121	74%	\$66	20%	\$206	\$76	1.5	\$26	\$12	16%	\$11	7%	\$13			
1.0	\$38	\$65	135%	\$62	1%	\$11	\$11	4.5	\$32	\$95	45%	\$11	45%	\$311	\$208		
3.5	\$36	\$155	95%	\$61	34%	\$277	\$183	3.5	\$24	\$13	8%	\$5	29%	\$43	\$33		
2.0	\$30	\$63	67%	\$58	3%	\$24	\$20	3.0	\$24	\$9	6%	\$3	33%	\$29	\$28		
1.5	\$32	\$59	83%	\$56	2%	\$13	\$13	2.5	\$24	\$4	3%	\$2	41%	\$20	\$19		
3.5	\$28	\$86	52%	\$56	14%		\$55	1.0	\$26	\$2	5%	\$2	33%	\$8	\$8		
3.0	\$28	\$71	51%	\$54	9%	\$122	\$40	4.0	\$38	\$69	37%	\$2	51%	\$292	\$291		
1.0	\$36	\$55	113%	\$52	1%	\$10	\$11	4.0	\$24	\$18	9%	\$1	35%	\$99	\$45		

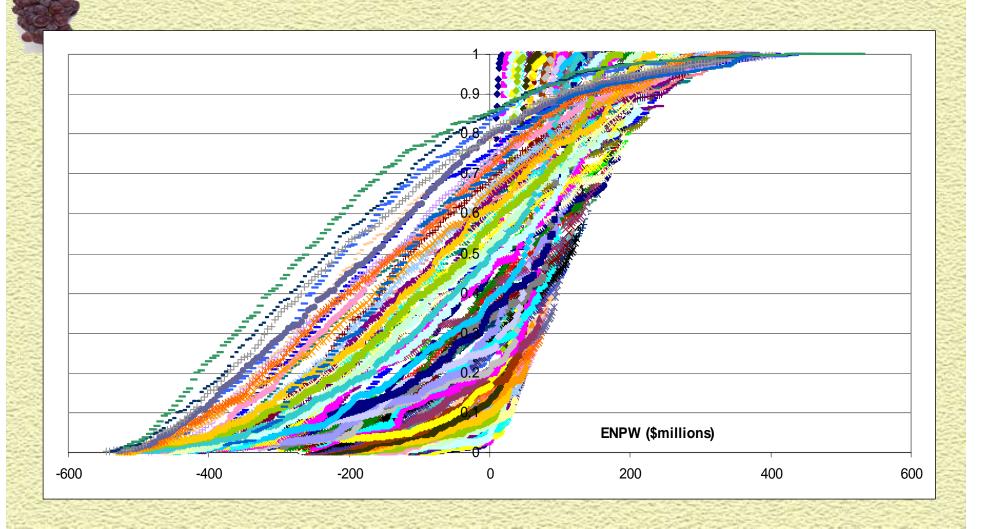
Effect of Uncertainty



Wine Manipulation



Wine Manipulation



Wine Manipulation

Complete Risk Analysis: $\beta = 0.8$

Comparison: Perfect to $\beta = 0.8$

"Perfect Wine"									β = 0.8								
K (mil)	р1	NPW (\$M)	ROI	ENPW	?=0	VAR (\$M)	OV (\$M)	K (mil)	p 1	NPW (\$M)	ROI	ENPW	?=0	VAR (\$M)	OV (\$M)		
1.0	\$34	\$44	92%	\$43	1%	\$9	\$9	1.5	\$38	\$100	140%	\$42	28%	\$174	\$72		
1.5	\$30	\$43	61%	\$41	1%	\$13	\$14	1.0	\$40	\$74	153%	\$41	20%	\$118	\$42		
2.0	\$28	\$42	45%	\$39	3%	\$18	\$19	1.5	\$34	\$73	103%	\$39	20%	\$142	\$45		
4.0	\$34	\$126	67%	\$38	41%	\$282	\$199	1.5	\$40	\$109	153%	\$38	33%	\$181	\$91		
3.5	\$26	\$50	30%	\$33	10%	\$102	\$42	1.0	\$36	\$54	112%	\$36	14%	\$95	\$25		
1.0	\$32	\$34	70%	\$33	1%	\$8	\$8	2.0	\$34	\$99	105%	\$32	31%	\$195	\$82		
3.0	\$26	\$40	28%	\$31	8%	\$49	\$31	1.5	\$32	\$58	82%	\$31	17%	\$138	\$38		
3.5	\$40	\$99	60%	\$30	44%	\$287	\$269	2.0	\$32	\$81	86%	\$30	27%	\$186	\$67		
4.0	\$26	\$59	32%	\$29	18%	\$136	\$55	1.0	\$34	\$44	92%	\$28	14%	\$100	\$24		
2.5	\$26	\$30	26%	\$26	4%	\$22	\$23										
1.5	\$28	\$27	39%	\$26	1%	\$14	\$13	1.5	\$30	\$43	61%	\$25	13%	\$127	\$33		
4.5	\$28	\$108	52%	\$25	33%	\$231	\$117	2.0	\$30	\$62	66%	\$24	23%	\$153	\$51		
4.0	\$36	\$97	52%	\$23	45%	\$305	\$246										
1.0	\$30	\$23	48%	\$23	0%	\$9	\$8										
4.5	\$30	\$122	58%	\$21	39%	\$280	\$160										
2.0	\$26	\$21	22%	\$20	4%	\$17	\$17	2.0	\$38	\$96		\$19	43%	\$207	\$136		
4.5	\$26	\$67	32%	\$16	25%	\$209	\$77	1.0	\$30	\$23	48%	\$18	8%	\$38	\$13		
1.0	\$28	\$13	26%	\$12	2%	\$9	\$9	2.5	\$28	\$55	47%	\$12	25%	\$189	\$62		
1.5	\$26	\$12	16%	\$11	7%	\$13	\$13										
4.5	\$32	\$95	45%	\$11	45%	\$311	\$208	2.5	\$32	\$99		\$10	38%	\$230	\$111		
3.5	\$24	\$13	8%	\$5	29%	\$43	\$33	2.0	\$26	\$21	22%	\$7	17%	\$83	\$28		
3.0	\$24	\$9	6%	\$3	33%	\$29	\$28	1.5	\$26	\$12	16%	\$4	17%	\$50	\$19		
2.5	\$24	\$4	3%	\$2	41%	\$20	\$19	2.5	\$26	\$30	25%	\$2	21%	\$168	\$44		

Conclusions

- Quality of the wine can be manipulated at negligible costs
- Uncertainty needs to be incorporated in order to make accurate decisions based on level of risk
- Risk can be adjusted by the adjustment of wine quality

Acknowledgements

- Dr. Miguel Bagajewicz, University of Oklahoma
- Phillip Coghill, TA
- Susan Kerr
- Michael Frow
- Curtis Baade

